mlpack
|
Implementation of the LSTM module class. More...
#include <lstm.hpp>
Public Member Functions | |
LSTM () | |
Create the LSTM object. | |
LSTM (const size_t inSize, const size_t outSize, const size_t rho=std::numeric_limits< size_t >::max()) | |
Create the LSTM layer object using the specified parameters. More... | |
LSTM (const LSTM &layer) | |
Copy constructor. | |
LSTM (LSTM &&) | |
Move constructor. | |
LSTM & | operator= (const LSTM &layer) |
Copy assignment operator. | |
LSTM & | operator= (LSTM &&layer) |
Move assignment operator. | |
template<typename InputType , typename OutputType > | |
void | Forward (const InputType &input, OutputType &output) |
Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template<typename InputType , typename OutputType > | |
void | Forward (const InputType &input, OutputType &output, OutputType &cellState, bool useCellState=false) |
Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template<typename InputType , typename ErrorType , typename GradientType > | |
void | Backward (const InputType &input, const ErrorType &gy, GradientType &g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
void | Reset () |
void | ResetCell (const size_t size) |
template<typename InputType , typename ErrorType , typename GradientType > | |
void | Gradient (const InputType &input, const ErrorType &error, GradientType &gradient) |
size_t | Rho () const |
Get the maximum number of steps to backpropagate through time (BPTT). | |
size_t & | Rho () |
Modify the maximum number of steps to backpropagate through time (BPTT). | |
OutputDataType const & | Parameters () const |
Get the parameters. | |
OutputDataType & | Parameters () |
Modify the parameters. | |
OutputDataType const & | OutputParameter () const |
Get the output parameter. | |
OutputDataType & | OutputParameter () |
Modify the output parameter. | |
OutputDataType const & | Delta () const |
Get the delta. | |
OutputDataType & | Delta () |
Modify the delta. | |
OutputDataType const & | Gradient () const |
Get the gradient. | |
OutputDataType & | Gradient () |
Modify the gradient. | |
size_t | InSize () const |
Get the number of input units. | |
size_t | OutSize () const |
Get the number of output units. | |
size_t | WeightSize () const |
Get the size of the weights. | |
size_t | InputShape () const |
Get the shape of the input. | |
template<typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. | |
Implementation of the LSTM module class.
The implementation corresponds to the following algorithm:
\begin{eqnarray} i &=& sigmoid(W \cdot x + W \cdot h + W \cdot c + b) \\ f &=& sigmoid(W \cdot x + W \cdot h + W \cdot c + b) \\ z &=& tanh(W \cdot x + W \cdot h + b) \\ c &=& f \odot c + i \odot z \\ o &=& sigmoid(W \cdot x + W \cdot h + W \cdot c + b) \\ h &=& o \odot tanh(c) \end{eqnarray}
Note that if an LSTM layer is desired as the first layer of a neural network, an IdentityLayer should be added to the network as the first layer, and then the LSTM layer should be added.
For more information, see the following.
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
mlpack::ann::LSTM< InputDataType, OutputDataType >::LSTM | ( | const size_t | inSize, |
const size_t | outSize, | ||
const size_t | rho = std::numeric_limits<size_t>::max() |
||
) |
Create the LSTM layer object using the specified parameters.
inSize | The number of input units. |
outSize | The number of output units. |
rho | Maximum number of steps to backpropagate through time (BPTT). |
void mlpack::ann::LSTM< InputDataType, OutputDataType >::Backward | ( | const InputType & | input, |
const ErrorType & | gy, | ||
GradientType & | g | ||
) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
input | The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
void mlpack::ann::LSTM< InputDataType, OutputDataType >::Forward | ( | const InputType & | input, |
OutputType & | output | ||
) |
Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |
Locally-stored cellState.
void mlpack::ann::LSTM< InputDataType, OutputDataType >::Forward | ( | const InputType & | input, |
OutputType & | output, | ||
OutputType & | cellState, | ||
bool | useCellState = false |
||
) |
Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.