|
mlpack
|
Implementation of the LSTM module class. More...
#include <lstm.hpp>
Public Member Functions | |
| LSTM () | |
| Create the LSTM object. | |
| LSTM (const size_t inSize, const size_t outSize, const size_t rho=std::numeric_limits< size_t >::max()) | |
| Create the LSTM layer object using the specified parameters. More... | |
| LSTM (const LSTM &layer) | |
| Copy constructor. | |
| LSTM (LSTM &&) | |
| Move constructor. | |
| LSTM & | operator= (const LSTM &layer) |
| Copy assignment operator. | |
| LSTM & | operator= (LSTM &&layer) |
| Move assignment operator. | |
| template<typename InputType , typename OutputType > | |
| void | Forward (const InputType &input, OutputType &output) |
| Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
| template<typename InputType , typename OutputType > | |
| void | Forward (const InputType &input, OutputType &output, OutputType &cellState, bool useCellState=false) |
| Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
| template<typename InputType , typename ErrorType , typename GradientType > | |
| void | Backward (const InputType &input, const ErrorType &gy, GradientType &g) |
| Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
| void | Reset () |
| void | ResetCell (const size_t size) |
| template<typename InputType , typename ErrorType , typename GradientType > | |
| void | Gradient (const InputType &input, const ErrorType &error, GradientType &gradient) |
| size_t | Rho () const |
| Get the maximum number of steps to backpropagate through time (BPTT). | |
| size_t & | Rho () |
| Modify the maximum number of steps to backpropagate through time (BPTT). | |
| OutputDataType const & | Parameters () const |
| Get the parameters. | |
| OutputDataType & | Parameters () |
| Modify the parameters. | |
| OutputDataType const & | OutputParameter () const |
| Get the output parameter. | |
| OutputDataType & | OutputParameter () |
| Modify the output parameter. | |
| OutputDataType const & | Delta () const |
| Get the delta. | |
| OutputDataType & | Delta () |
| Modify the delta. | |
| OutputDataType const & | Gradient () const |
| Get the gradient. | |
| OutputDataType & | Gradient () |
| Modify the gradient. | |
| size_t | InSize () const |
| Get the number of input units. | |
| size_t | OutSize () const |
| Get the number of output units. | |
| size_t | WeightSize () const |
| Get the size of the weights. | |
| size_t | InputShape () const |
| Get the shape of the input. | |
| template<typename Archive > | |
| void | serialize (Archive &ar, const uint32_t) |
| Serialize the layer. | |
Implementation of the LSTM module class.
The implementation corresponds to the following algorithm:
\begin{eqnarray} i &=& sigmoid(W \cdot x + W \cdot h + W \cdot c + b) \\ f &=& sigmoid(W \cdot x + W \cdot h + W \cdot c + b) \\ z &=& tanh(W \cdot x + W \cdot h + b) \\ c &=& f \odot c + i \odot z \\ o &=& sigmoid(W \cdot x + W \cdot h + W \cdot c + b) \\ h &=& o \odot tanh(c) \end{eqnarray}
Note that if an LSTM layer is desired as the first layer of a neural network, an IdentityLayer should be added to the network as the first layer, and then the LSTM layer should be added.
For more information, see the following.
| InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
| mlpack::ann::LSTM< InputDataType, OutputDataType >::LSTM | ( | const size_t | inSize, |
| const size_t | outSize, | ||
| const size_t | rho = std::numeric_limits<size_t>::max() |
||
| ) |
Create the LSTM layer object using the specified parameters.
| inSize | The number of input units. |
| outSize | The number of output units. |
| rho | Maximum number of steps to backpropagate through time (BPTT). |
| void mlpack::ann::LSTM< InputDataType, OutputDataType >::Backward | ( | const InputType & | input, |
| const ErrorType & | gy, | ||
| GradientType & | g | ||
| ) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
| input | The propagated input activation. |
| gy | The backpropagated error. |
| g | The calculated gradient. |
| void mlpack::ann::LSTM< InputDataType, OutputDataType >::Forward | ( | const InputType & | input, |
| OutputType & | output | ||
| ) |
Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
| input | Input data used for evaluating the specified function. |
| output | Resulting output activation. |
Locally-stored cellState.
| void mlpack::ann::LSTM< InputDataType, OutputDataType >::Forward | ( | const InputType & | input, |
| OutputType & | output, | ||
| OutputType & | cellState, | ||
| bool | useCellState = false |
||
| ) |
Ordinary feed-forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
1.8.13