mlpack
Public Member Functions | List of all members
mlpack::ann::GRU< InputDataType, OutputDataType > Class Template Reference

An implementation of a gru network layer. More...

#include <gru.hpp>

Public Member Functions

 GRU ()
 Create the GRU object.
 
 GRU (const size_t inSize, const size_t outSize, const size_t rho=std::numeric_limits< size_t >::max())
 Create the GRU layer object using the specified parameters. More...
 
template<typename eT >
void Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output)
 Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More...
 
template<typename eT >
void Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g)
 Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More...
 
template<typename eT >
void Gradient (const arma::Mat< eT > &input, const arma::Mat< eT > &, arma::Mat< eT > &)
 
void ResetCell (const size_t size)
 
bool Deterministic () const
 The value of the deterministic parameter.
 
bool & Deterministic ()
 Modify the value of the deterministic parameter.
 
size_t Rho () const
 Get the maximum number of steps to backpropagate through time (BPTT).
 
size_t & Rho ()
 Modify the maximum number of steps to backpropagate through time (BPTT).
 
OutputDataType const & Parameters () const
 Get the parameters.
 
OutputDataType & Parameters ()
 Modify the parameters.
 
OutputDataType const & OutputParameter () const
 Get the output parameter.
 
OutputDataType & OutputParameter ()
 Modify the output parameter.
 
OutputDataType const & Delta () const
 Get the delta.
 
OutputDataType & Delta ()
 Modify the delta.
 
OutputDataType const & Gradient () const
 Get the gradient.
 
OutputDataType & Gradient ()
 Modify the gradient.
 
std::vector< LayerTypes<> > & Model ()
 Get the model modules.
 
size_t InSize () const
 Get the number of input units.
 
size_t OutSize () const
 Get the number of output units.
 
size_t InputShape () const
 Get the shape of the input.
 
template<typename Archive >
void serialize (Archive &ar, const uint32_t)
 Serialize the layer.
 

Detailed Description

template<typename InputDataType = arma::mat, typename OutputDataType = arma::mat>
class mlpack::ann::GRU< InputDataType, OutputDataType >

An implementation of a gru network layer.

This cell can be used in RNN networks.

Template Parameters
InputDataTypeType of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).
OutputDataTypeType of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube).

Constructor & Destructor Documentation

◆ GRU()

template<typename InputDataType , typename OutputDataType >
mlpack::ann::GRU< InputDataType, OutputDataType >::GRU ( const size_t  inSize,
const size_t  outSize,
const size_t  rho = std::numeric_limits<size_t>::max() 
)

Create the GRU layer object using the specified parameters.

Parameters
inSizeThe number of input units.
outSizeThe number of output units.
rhoMaximum number of steps to backpropagate through time (BPTT).

Member Function Documentation

◆ Backward()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::GRU< InputDataType, OutputDataType >::Backward ( const arma::Mat< eT > &  input,
const arma::Mat< eT > &  gy,
arma::Mat< eT > &  g 
)

Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.

Using the results from the feed forward pass.

Parameters
*(input) The propagated input activation.
gyThe backpropagated error.
gThe calculated gradient.

◆ Forward()

template<typename InputDataType , typename OutputDataType >
template<typename eT >
void mlpack::ann::GRU< InputDataType, OutputDataType >::Forward ( const arma::Mat< eT > &  input,
arma::Mat< eT > &  output 
)

Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.

Parameters
inputInput data used for evaluating the specified function.
outputResulting output activation.

The documentation for this class was generated from the following files: