mlpack
|
This class implements the Recurrent Model for Visual Attention, using a variety of possible layer implementations. More...
#include <recurrent_attention.hpp>
Public Member Functions | |
RecurrentAttention () | |
Default constructor: this will not give a usable RecurrentAttention object, so be sure to set all the parameters before use. | |
template<typename RNNModuleType , typename ActionModuleType > | |
RecurrentAttention (const size_t outSize, const RNNModuleType &rnn, const ActionModuleType &action, const size_t rho) | |
Create the RecurrentAttention object using the specified modules. More... | |
template<typename eT > | |
void | Forward (const arma::Mat< eT > &input, arma::Mat< eT > &output) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f. More... | |
template<typename eT > | |
void | Backward (const arma::Mat< eT > &, const arma::Mat< eT > &gy, arma::Mat< eT > &g) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f. More... | |
template<typename eT > | |
void | Gradient (const arma::Mat< eT > &, const arma::Mat< eT > &, arma::Mat< eT > &) |
std::vector< LayerTypes<> > & | Model () |
Get the model modules. | |
bool | Deterministic () const |
The value of the deterministic parameter. | |
bool & | Deterministic () |
Modify the value of the deterministic parameter. | |
OutputDataType const & | Parameters () const |
Get the parameters. | |
OutputDataType & | Parameters () |
Modify the parameters. | |
OutputDataType const & | OutputParameter () const |
Get the output parameter. | |
OutputDataType & | OutputParameter () |
Modify the output parameter. | |
OutputDataType const & | Delta () const |
Get the delta. | |
OutputDataType & | Delta () |
Modify the delta. | |
OutputDataType const & | Gradient () const |
Get the gradient. | |
OutputDataType & | Gradient () |
Modify the gradient. | |
size_t | OutSize () const |
Get the module output size. | |
size_t const & | Rho () const |
Get the number of steps to backpropagate through time. | |
template<typename Archive > | |
void | serialize (Archive &ar, const uint32_t) |
Serialize the layer. | |
This class implements the Recurrent Model for Visual Attention, using a variety of possible layer implementations.
For more information, see the following paper.
InputDataType | Type of the input data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
OutputDataType | Type of the output data (arma::colvec, arma::mat, arma::sp_mat or arma::cube). |
mlpack::ann::RecurrentAttention< InputDataType, OutputDataType >::RecurrentAttention | ( | const size_t | outSize, |
const RNNModuleType & | rnn, | ||
const ActionModuleType & | action, | ||
const size_t | rho | ||
) |
Create the RecurrentAttention object using the specified modules.
outSize | The module output size. |
rnn | The recurrent neural network module. |
action | The action module. |
rho | Maximum number of steps to backpropagate through time (BPTT). |
void mlpack::ann::RecurrentAttention< InputDataType, OutputDataType >::Backward | ( | const arma::Mat< eT > & | , |
const arma::Mat< eT > & | gy, | ||
arma::Mat< eT > & | g | ||
) |
Ordinary feed backward pass of a neural network, calculating the function f(x) by propagating x backwards trough f.
Using the results from the feed forward pass.
* | (input) The propagated input activation. |
gy | The backpropagated error. |
g | The calculated gradient. |
void mlpack::ann::RecurrentAttention< InputDataType, OutputDataType >::Forward | ( | const arma::Mat< eT > & | input, |
arma::Mat< eT > & | output | ||
) |
Ordinary feed forward pass of a neural network, evaluating the function f(x) by propagating the activity forward through f.
input | Input data used for evaluating the specified function. |
output | Resulting output activation. |