Stochastic RBF.
More...
#include <adaptive_sampling.h>
|
| SRBF (const std::shared_ptr< Problem > &data, const std::shared_ptr< Surrogate > &surf, int numCand, int budget) |
| Constructor. More...
|
|
void | reset (int budget) |
| Resets the object for a new budget (useful if a strategy restarts) More...
|
|
mat | makePoints (const vec &xBest, const mat &points, const vec &sigma, int newPoints) |
| Proposes new evaluations. More...
|
|
template<class MeritFunction = MeritWeightedDistance>
class sot::SRBF< MeritFunction >
Stochastic RBF.
This is an implementation of the SRBF method that generates the candidate points by perturbing each variable by a normally distrubuted realization.
- Template Parameters
-
MeritFunction | The merit function is used to pick the most promising out of the generated candidate points. |
- Author
- David Eriksson, dme65.nosp@m.@cor.nosp@m.nell..nosp@m.edu
template<class MeritFunction = MeritWeightedDistance>
Constructor.
- Parameters
-
data | A shared pointer to the optimization problem |
surf | A shared pointer to the surrogate model |
numCand | Number of candidate points that are generated in makePoints |
budget | Evaluation budget for the adaptive sampling phase |
template<class MeritFunction = MeritWeightedDistance>
Proposes new evaluations.
- Parameters
-
xBest | The best solution found so far |
points | Previously evaluated points |
sigma | The sampling radius for each dimension |
newPoints | Number of new evaluations to be generated |
- Returns
- The proposed points
Implements sot::Sampling.
template<class MeritFunction = MeritWeightedDistance>
Resets the object for a new budget (useful if a strategy restarts)
- Parameters
-
budget | New evaluation budget |
Implements sot::Sampling.
template<class MeritFunction = MeritWeightedDistance>
Evaluation budget for the adaptive sampling phase
template<class MeritFunction = MeritWeightedDistance>
A shared pointer to the optimization problem
template<class MeritFunction = MeritWeightedDistance>
Number of dimensions (extracted from mData)
template<class MeritFunction = MeritWeightedDistance>
template<class MeritFunction = MeritWeightedDistance>
Merit function that is used for picking candidate points
template<class MeritFunction = MeritWeightedDistance>
Number of candidate points that are generated in makePoints
template<class MeritFunction = MeritWeightedDistance>
template<class MeritFunction = MeritWeightedDistance>
A shared pointer to the surrogate model
template<class MeritFunction = MeritWeightedDistance>
Lower variable bounds (extracted from mData)
template<class MeritFunction = MeritWeightedDistance>
Upper variable bounds (extracted from mData)
The documentation for this class was generated from the following file: