OSVR-Core
|
Householder rank-revealing QR decomposition of a matrix with column-pivoting. More...
#include <ColPivHouseholderQR.h>
Public Types | |
enum | { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime } |
typedef _MatrixType | MatrixType |
typedef MatrixType::Scalar | Scalar |
typedef MatrixType::RealScalar | RealScalar |
typedef MatrixType::Index | Index |
typedef Matrix< Scalar, RowsAtCompileTime, RowsAtCompileTime, Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime > | MatrixQType |
typedef internal::plain_diag_type< MatrixType >::type | HCoeffsType |
typedef PermutationMatrix< ColsAtCompileTime, MaxColsAtCompileTime > | PermutationType |
typedef internal::plain_row_type< MatrixType, Index >::type | IntRowVectorType |
typedef internal::plain_row_type< MatrixType >::type | RowVectorType |
typedef internal::plain_row_type< MatrixType, RealScalar >::type | RealRowVectorType |
typedef HouseholderSequence< MatrixType, typename internal::remove_all< typename HCoeffsType::ConjugateReturnType >::type > | HouseholderSequenceType |
Public Member Functions | |
ColPivHouseholderQR () | |
Default Constructor. More... | |
ColPivHouseholderQR (Index rows, Index cols) | |
Default Constructor with memory preallocation. More... | |
ColPivHouseholderQR (const MatrixType &matrix) | |
Constructs a QR factorization from a given matrix. More... | |
template<typename Rhs > | |
const internal::solve_retval< ColPivHouseholderQR, Rhs > | solve (const MatrixBase< Rhs > &b) const |
This method finds a solution x to the equation Ax=b, where A is the matrix of which *this is the QR decomposition, if any exists. More... | |
HouseholderSequenceType | householderQ (void) const |
HouseholderSequenceType | matrixQ (void) const |
const MatrixType & | matrixQR () const |
const MatrixType & | matrixR () const |
ColPivHouseholderQR & | compute (const MatrixType &matrix) |
Performs the QR factorization of the given matrix matrix. More... | |
const PermutationType & | colsPermutation () const |
MatrixType::RealScalar | absDeterminant () const |
MatrixType::RealScalar | logAbsDeterminant () const |
Index | rank () const |
Index | dimensionOfKernel () const |
bool | isInjective () const |
bool | isSurjective () const |
bool | isInvertible () const |
const internal::solve_retval< ColPivHouseholderQR, typename MatrixType::IdentityReturnType > | inverse () const |
Index | rows () const |
Index | cols () const |
const HCoeffsType & | hCoeffs () const |
ColPivHouseholderQR & | setThreshold (const RealScalar &threshold) |
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero. More... | |
ColPivHouseholderQR & | setThreshold (Default_t) |
Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold. More... | |
RealScalar | threshold () const |
Returns the threshold that will be used by certain methods such as rank(). More... | |
Index | nonzeroPivots () const |
RealScalar | maxPivot () const |
ComputationInfo | info () const |
Reports whether the QR factorization was succesful. More... | |
Static Protected Member Functions | |
static void | check_template_parameters () |
Protected Attributes | |
MatrixType | m_qr |
HCoeffsType | m_hCoeffs |
PermutationType | m_colsPermutation |
IntRowVectorType | m_colsTranspositions |
RowVectorType | m_temp |
RealRowVectorType | m_colSqNorms |
bool | m_isInitialized |
bool | m_usePrescribedThreshold |
RealScalar | m_prescribedThreshold |
RealScalar | m_maxpivot |
Index | m_nonzero_pivots |
Index | m_det_pq |
Householder rank-revealing QR decomposition of a matrix with column-pivoting.
MatrixType | the type of the matrix of which we are computing the QR decomposition |
This class performs a rank-revealing QR decomposition of a matrix A into matrices P, Q and R such that
\[ \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R} \]
by using Householder transformations. Here, P is a permutation matrix, Q a unitary matrix and R an upper triangular matrix.
This decomposition performs column pivoting in order to be rank-revealing and improve numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
|
inline |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
|
inline |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
|
inline |
MatrixType::RealScalar Eigen::ColPivHouseholderQR< MatrixType >::absDeterminant | ( | ) | const |
|
inline |
ColPivHouseholderQR< MatrixType > & Eigen::ColPivHouseholderQR< MatrixType >::compute | ( | const MatrixType & | matrix | ) |
Performs the QR factorization of the given matrix matrix.
The result of the factorization is stored into *this
, and a reference to *this
is returned.
|
inline |
|
inline |
Q
.For advanced uses only.
ColPivHouseholderQR< MatrixType >::HouseholderSequenceType Eigen::ColPivHouseholderQR< MatrixType >::householderQ | ( | void | ) | const |
|
inline |
Reports whether the QR factorization was succesful.
Success
. It is provided for compatibility with other factorization routines. Success
|
inline |
|
inline |
|
inline |
|
inline |
MatrixType::RealScalar Eigen::ColPivHouseholderQR< MatrixType >::logAbsDeterminant | ( | ) | const |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
|
inline |
Allows to prescribe a threshold to be used by certain methods, such as rank(), who need to determine when pivots are to be considered nonzero.
This is not used for the QR decomposition itself.
When it needs to get the threshold value, Eigen calls threshold(). By default, this uses a formula to automatically determine a reasonable threshold. Once you have called the present method setThreshold(const RealScalar&), your value is used instead.
threshold | The new value to use as the threshold. |
A pivot will be considered nonzero if its absolute value is strictly greater than \( \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \) where maxpivot is the biggest pivot.
If you want to come back to the default behavior, call setThreshold(Default_t)
|
inline |
Allows to come back to the default behavior, letting Eigen use its default formula for determining the threshold.
You should pass the special object Eigen::Default as parameter here.
See the documentation of setThreshold(const RealScalar&).
|
inline |
This method finds a solution x to the equation Ax=b, where A is the matrix of which *this is the QR decomposition, if any exists.
b | the right-hand-side of the equation to solve. |
Example:
Output:
|
inline |
Returns the threshold that will be used by certain methods such as rank().
See the documentation of setThreshold(const RealScalar&).