OSVR-Core
|
Standard Cholesky decomposition (LL^T) of a matrix and associated features. More...
#include <LLT.h>
Public Types | |
enum | { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime } |
enum | { PacketSize = internal::packet_traits<Scalar>::size, AlignmentMask = int(PacketSize)-1, UpLo = _UpLo } |
typedef _MatrixType | MatrixType |
typedef MatrixType::Scalar | Scalar |
typedef NumTraits< typename MatrixType::Scalar >::Real | RealScalar |
typedef MatrixType::Index | Index |
typedef internal::LLT_Traits< MatrixType, UpLo > | Traits |
Public Member Functions | |
LLT () | |
Default Constructor. More... | |
LLT (Index size) | |
Default Constructor with memory preallocation. More... | |
LLT (const MatrixType &matrix) | |
Traits::MatrixU | matrixU () const |
Traits::MatrixL | matrixL () const |
template<typename Rhs > | |
const internal::solve_retval< LLT, Rhs > | solve (const MatrixBase< Rhs > &b) const |
template<typename Derived > | |
void | solveInPlace (MatrixBase< Derived > &bAndX) const |
LLT & | compute (const MatrixType &matrix) |
Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of matrix. More... | |
const MatrixType & | matrixLLT () const |
MatrixType | reconstructedMatrix () const |
ComputationInfo | info () const |
Reports whether previous computation was successful. More... | |
Index | rows () const |
Index | cols () const |
template<typename VectorType > | |
LLT | rankUpdate (const VectorType &vec, const RealScalar &sigma=1) |
template<typename VectorType > | |
LLT< _MatrixType, _UpLo > | rankUpdate (const VectorType &v, const RealScalar &sigma) |
Performs a rank one update (or dowdate) of the current decomposition. More... | |
Static Protected Member Functions | |
static void | check_template_parameters () |
Protected Attributes | |
MatrixType | m_matrix |
bool | m_isInitialized |
ComputationInfo | m_info |
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
MatrixType | the type of the matrix of which we are computing the LL^T Cholesky decomposition |
UpLo | the triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read. |
This class performs a LL^T Cholesky decomposition of a symmetric, positive definite matrix A such that A = LL^* = U^*U, where L is lower triangular.
While the Cholesky decomposition is particularly useful to solve selfadjoint problems like D^*D x = b, for that purpose, we recommend the Cholesky decomposition without square root which is more stable and even faster. Nevertheless, this standard Cholesky decomposition remains useful in many other situations like generalised eigen problems with hermitian matrices.
Remember that Cholesky decompositions are not rank-revealing. This LLT decomposition is only stable on positive definite matrices, use LDLT instead for the semidefinite case. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.
Example:
Output:
|
inline |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via LLT::compute(const MatrixType&).
|
inline |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
LLT< MatrixType, _UpLo > & Eigen::LLT< MatrixType, _UpLo >::compute | ( | const MatrixType & | a | ) |
Computes / recomputes the Cholesky decomposition A = LL^* = U^*U of matrix.
Example:
Output:
|
inline |
Reports whether previous computation was successful.
Success
if computation was succesful, NumericalIssue
if the matrix.appears to be negative.
|
inline |
|
inline |
TODO: document the storage layout
|
inline |
LLT<_MatrixType,_UpLo> Eigen::LLT< _MatrixType, _UpLo >::rankUpdate | ( | const VectorType & | v, |
const RealScalar & | sigma | ||
) |
Performs a rank one update (or dowdate) of the current decomposition.
If A = LL^* before the rank one update, then after it we have LL^* = A + sigma * v v^* where v must be a vector of same dimension.
MatrixType Eigen::LLT< MatrixType, _UpLo >::reconstructedMatrix | ( | ) | const |
|
inline |
Since this LLT class assumes anyway that the matrix A is invertible, the solution theoretically exists and is unique regardless of b.
Example:
Output: