OSVR-Core
|
Robust Cholesky decomposition of a matrix with pivoting. More...
#include <LDLT.h>
Public Types | |
enum | { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, Options = MatrixType::Options & ~RowMajorBit, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, UpLo = _UpLo } |
typedef _MatrixType | MatrixType |
typedef MatrixType::Scalar | Scalar |
typedef NumTraits< typename MatrixType::Scalar >::Real | RealScalar |
typedef MatrixType::Index | Index |
typedef Matrix< Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1 > | TmpMatrixType |
typedef Transpositions< RowsAtCompileTime, MaxRowsAtCompileTime > | TranspositionType |
typedef PermutationMatrix< RowsAtCompileTime, MaxRowsAtCompileTime > | PermutationType |
typedef internal::LDLT_Traits< MatrixType, UpLo > | Traits |
Public Member Functions | |
LDLT () | |
Default Constructor. More... | |
LDLT (Index size) | |
Default Constructor with memory preallocation. More... | |
LDLT (const MatrixType &matrix) | |
Constructor with decomposition. More... | |
void | setZero () |
Clear any existing decomposition. More... | |
Traits::MatrixU | matrixU () const |
Traits::MatrixL | matrixL () const |
const TranspositionType & | transpositionsP () const |
Diagonal< const MatrixType > | vectorD () const |
bool | isPositive () const |
bool | isNegative (void) const |
template<typename Rhs > | |
const internal::solve_retval< LDLT, Rhs > | solve (const MatrixBase< Rhs > &b) const |
template<typename Derived > | |
bool | solveInPlace (MatrixBase< Derived > &bAndX) const |
LDLT & | compute (const MatrixType &matrix) |
Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of matrix. | |
template<typename Derived > | |
LDLT & | rankUpdate (const MatrixBase< Derived > &w, const RealScalar &alpha=1) |
const MatrixType & | matrixLDLT () const |
MatrixType | reconstructedMatrix () const |
Index | rows () const |
Index | cols () const |
ComputationInfo | info () const |
Reports whether previous computation was successful. More... | |
template<typename Derived > | |
LDLT< MatrixType, _UpLo > & | rankUpdate (const MatrixBase< Derived > &w, const typename LDLT< MatrixType, _UpLo >::RealScalar &sigma) |
Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. More... | |
Static Protected Member Functions | |
static void | check_template_parameters () |
Protected Attributes | |
MatrixType | m_matrix |
TranspositionType | m_transpositions |
TmpMatrixType | m_temporary |
internal::SignMatrix | m_sign |
bool | m_isInitialized |
Robust Cholesky decomposition of a matrix with pivoting.
MatrixType | the type of the matrix of which to compute the LDL^T Cholesky decomposition |
UpLo | the triangular part that will be used for the decompositon: Lower (default) or Upper. The other triangular part won't be read. |
Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite matrix \( A \) such that \( A = P^TLDL^*P \), where P is a permutation matrix, L is lower triangular with a unit diagonal and D is a diagonal matrix.
The decomposition uses pivoting to ensure stability, so that L will have zeros in the bottom right rank(A) - n submatrix. Avoiding the square root on D also stabilizes the computation.
Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine whether a system of equations has a solution.
|
inline |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via LDLT::compute(const MatrixType&).
|
inline |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
|
inline |
Constructor with decomposition.
This calculates the decomposition for the input matrix.
|
inline |
Reports whether previous computation was successful.
Success
if computation was succesful, NumericalIssue
if the matrix.appears to be negative.
|
inline |
|
inline |
|
inline |
|
inline |
TODO: document the storage layout
|
inline |
LDLT<MatrixType,_UpLo>& Eigen::LDLT< _MatrixType, _UpLo >::rankUpdate | ( | const MatrixBase< Derived > & | w, |
const typename LDLT< MatrixType, _UpLo >::RealScalar & | sigma | ||
) |
Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
w | a vector to be incorporated into the decomposition. |
sigma | a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. |
MatrixType Eigen::LDLT< MatrixType, _UpLo >::reconstructedMatrix | ( | ) | const |
|
inline |
Clear any existing decomposition.
|
inline |
This function also supports in-place solves using the syntax x = decompositionObject.solve(x)
.
More precisely, this method solves \( A x = b \) using the decomposition \( A = P^T L D L^* P \) by solving the systems \( P^T y_1 = b \), \( L y_2 = y_1 \), \( D y_3 = y_2 \), \( L^* y_4 = y_3 \) and \( P x = y_4 \) in succession. If the matrix \( A \) is singular, then \( D \) will also be singular (all the other matrices are invertible). In that case, the least-square solution of \( D y_3 = y_2 \) is computed. This does not mean that this function computes the least-square solution of \( A x = b \) is \( A \) is singular.
|
inline |
|
inline |