DYnamic COordinate search using Response Surface models.
More...
#include <adaptive_sampling.h>
|
| DYCORS (const std::shared_ptr< Problem > &data, const std::shared_ptr< Surrogate > &surf, int numCand, int budget) |
| Constructor. More...
|
|
void | reset (int budget) |
| Resets the object for a new budget (useful if a strategy restarts) More...
|
|
mat | makePoints (const vec &xBest, const mat &points, const vec &sigma, int newPoints) |
| Proposes new evaluations. More...
|
|
template<class MeritFunction = MeritWeightedDistance>
class sot::DYCORS< MeritFunction >
DYnamic COordinate search using Response Surface models.
This is an implementation of the DYCORS method that perturbs fewer and fewer variables as the optimization proceeds. The candidate points are generated by perturbing each variable using the probability proposed by DYCORS.
- Template Parameters
-
MeritFunction | The merit function is used to pick the most promising out of the generated candidate points. |
- Todo:
- Should use SRBF as a Base class
- Author
- David Eriksson, dme65.nosp@m.@cor.nosp@m.nell..nosp@m.edu
template<class MeritFunction = MeritWeightedDistance>
Constructor.
- Parameters
-
data | A shared pointer to the optimization problem |
surf | A shared pointer to the surrogate model |
numCand | Number of candidate points that are generated in makePoints |
budget | Evaluation budget for the adaptive sampling phase |
template<class MeritFunction = MeritWeightedDistance>
Proposes new evaluations.
- Parameters
-
xBest | The best solution found so far |
points | Previously evaluated points |
sigma | The sampling radius |
newPoints | Number of new evaluations to be generated |
- Returns
- The proposed points
Implements sot::Sampling.
template<class MeritFunction = MeritWeightedDistance>
Resets the object for a new budget (useful if a strategy restarts)
- Parameters
-
budget | New evaluation budget |
Implements sot::Sampling.
template<class MeritFunction = MeritWeightedDistance>
Evaluation budget for the adaptive sampling phase
template<class MeritFunction = MeritWeightedDistance>
A shared pointer to the optimization problem
template<class MeritFunction = MeritWeightedDistance>
Number of dimensions (extracted from mData)
template<class MeritFunction = MeritWeightedDistance>
template<class MeritFunction = MeritWeightedDistance>
Merit function that is used for picking candidate points
template<class MeritFunction = MeritWeightedDistance>
Number of candidate points that are generated in makePoints
template<class MeritFunction = MeritWeightedDistance>
template<class MeritFunction = MeritWeightedDistance>
A shared pointer to the surrogate model
template<class MeritFunction = MeritWeightedDistance>
Lower variable bounds (extracted from mData)
template<class MeritFunction = MeritWeightedDistance>
Upper variable bounds (extracted from mData)
The documentation for this class was generated from the following file: