Represent a three-dimensional similarity transformation (a rotation, a scale factor and a translation).
More...
|
| SIM3 () |
| Default constructor. Initialises the the rotation to zero (the identity), the scale to one and the translation to zero.
|
|
template<int S, typename P , typename A > |
| SIM3 (const SO3< Precision > &R, const Vector< S, P, A > &T, const Precision &s) |
|
template<int S, typename P , typename A > |
| SIM3 (const Vector< S, P, A > &v) |
|
SO3< Precision > & | get_rotation () |
| Returns the rotation part of the transformation as a SO3.
|
|
const SO3< Precision > & | get_rotation () const |
|
Vector< 3, Precision > & | get_translation () |
| Returns the translation part of the transformation as a Vector.
|
|
const Vector< 3, Precision > & | get_translation () const |
|
Precision & | get_scale () |
| Returns the scale factor.
|
|
const Precision & | get_scale () const |
|
Vector< 7, Precision > | ln () const |
|
SIM3 | inverse () const |
|
SIM3 & | operator*= (const SIM3 &rhs) |
| Right-multiply by another SIM3 (concatenate the two transformations) More...
|
|
SIM3 & | operator= (const TooN::Operator< TooN::Internal::Identity< TooN::Internal::One >> &) |
| Reset back to the identity transform.
|
|
template<typename P > |
SIM3< typename Internal::MultiplyType< Precision, P >::type > | operator* (const SIM3< P > &rhs) const |
| Right-multiply by another SIM3 (concatenate the two transformations) More...
|
|
SIM3 & | left_multiply_by (const SIM3 &left) |
|
template<int S, typename P2 , typename Accessor > |
Vector< 7, Precision > | adjoint (const Vector< S, P2, Accessor > &vect) const |
| Transfer a matrix in the Lie Algebra from one co-ordinate frame to another. More...
|
|
template<int S, typename P2 , typename Accessor > |
Vector< 7, Precision > | trinvadjoint (const Vector< S, P2, Accessor > &vect) const |
| Transfer covectors between frames (using the transpose of the inverse of the adjoint) so that trinvadjoint(vect1) * adjoint(vect2) = vect1 * vect2.
|
|
template<int R, int C, typename P2 , typename Accessor > |
Matrix< 7, 7, Precision > | adjoint (const Matrix< R, C, P2, Accessor > &M) const |
|
template<int R, int C, typename P2 , typename Accessor > |
Matrix< 7, 7, Precision > | trinvadjoint (const Matrix< R, C, P2, Accessor > &M) const |
|
template<int S, typename P , typename VA > |
SIM3< Precision > | exp (const Vector< S, P, VA > &mu) |
|
|
template<int S, typename P , typename A > |
static SIM3 | exp (const Vector< S, P, A > &vect) |
| Exponentiate a Vector in the Lie Algebra to generate a new SIM3. More...
|
|
static Vector< 7, Precision > | ln (const SIM3 &se3) |
| Take the logarithm of the matrix, generating the corresponding vector in the Lie Algebra. More...
|
|
static Matrix< 4, 4, Precision > | generator (int i) |
|
template<typename Base > |
static Vector< 4, Precision > | generator_field (int i, const Vector< 4, Precision, Base > &pos) |
| Returns the i-th generator times pos.
|
|
|
(Note that these are not member functions.)
|
template<typename Precision > |
std::ostream & | operator<< (std::ostream &os, const SIM3< Precision > &rhs) |
| Write an SIM3 to a stream. More...
|
|
template<typename Precision > |
std::istream & | operator>> (std::istream &is, SIM3< Precision > &rhs) |
| Reads an SIM3 from a stream. More...
|
|
template<int S, typename PV , typename A , typename P > |
Vector< 4, typename Internal::MultiplyType< P, PV >::type > | operator* (const SIM3< P > &lhs, const Vector< S, PV, A > &rhs) |
| Right-multiply by a Vector. More...
|
|
template<typename PV , typename A , typename P > |
Vector< 3, typename Internal::MultiplyType< P, PV >::type > | operator* (const SIM3< P > &lhs, const Vector< 3, PV, A > &rhs) |
| Right-multiply by a Vector. More...
|
|
template<int S, typename PV , typename A , typename P > |
Vector< 4, typename Internal::MultiplyType< P, PV >::type > | operator* (const Vector< S, PV, A > &lhs, const SIM3< P > &rhs) |
| Left-multiply by a Vector. More...
|
|
template<int R, int Cols, typename PM , typename A , typename P > |
Matrix< 4, Cols, typename Internal::MultiplyType< P, PM >::type > | operator* (const SIM3< P > &lhs, const Matrix< R, Cols, PM, A > &rhs) |
| Right-multiply by a Matrix. More...
|
|
template<int Rows, int C, typename PM , typename A , typename P > |
Matrix< Rows, 4, typename Internal::MultiplyType< PM, P >::type > | operator* (const Matrix< Rows, C, PM, A > &lhs, const SIM3< P > &rhs) |
| Left-multiply by a Matrix. More...
|
|
template<typename Precision = DefaultPrecision>
class TooN::SIM3< Precision >
Represent a three-dimensional similarity transformation (a rotation, a scale factor and a translation).
This can be represented by a matrix operating on a homogeneous co-ordinate, so that a vector \(\underline{x}\) is transformed to a new location \(\underline{x}'\) by
\[\begin{aligned}\underline{x}' &= E\times\underline{x}\\ \begin{bmatrix}x'\\y'\\z'\end{bmatrix} &= \begin{pmatrix}s r_{11} & s r_{12} & s r_{13} & t_1\\s r_{21} & s r_{22} & s r_{23} & t_2\\s r_{31} & s r_{32} & s r_{33} & t_3\end{pmatrix}\begin{bmatrix}x\\y\\z\\1\end{bmatrix}\end{aligned}\]
This transformation is a member of the Lie group SIM3. These can be parameterised with seven numbers (in the space of the Lie Algebra). In this class, the first three parameters are a translation vector while the second three are a rotation vector, whose direction is the axis of rotation and length the amount of rotation (in radians), as for SO3. The seventh parameter is the log of the scale of the transformation.
template<typename Precision >
template<int S, typename P2 , typename Accessor >
Transfer a matrix in the Lie Algebra from one co-ordinate frame to another.
This is the operation such that for a matrix \( B \), \( e^{\text{Adj}(v)} = Be^{v}B^{-1} \)
- Parameters
-
template<typename Precision >
template<int R, int C, typename P2 , typename Accessor >
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
template<typename Precision >
template<int R, int C, typename P2 , typename Accessor >
Matrix< 7, 7, Precision > TooN::SIM3< Precision >::trinvadjoint |
( |
const Matrix< R, C, P2, Accessor > & |
M | ) |
const |
|
inline |
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.