|
| SelfAdjointView (MatrixType &matrix) |
|
Index | rows () const |
|
Index | cols () const |
|
Index | outerStride () const |
|
Index | innerStride () const |
|
Scalar | coeff (Index row, Index col) const |
|
Scalar & | coeffRef (Index row, Index col) |
|
const MatrixTypeNestedCleaned & | _expression () const |
|
const MatrixTypeNestedCleaned & | nestedExpression () const |
|
MatrixTypeNestedCleaned & | nestedExpression () |
|
template<typename OtherDerived > |
SelfadjointProductMatrix< MatrixType, Mode, false, OtherDerived, 0, OtherDerived::IsVectorAtCompileTime > | operator* (const MatrixBase< OtherDerived > &rhs) const |
| Efficient self-adjoint matrix times vector/matrix product.
|
|
template<typename DerivedU , typename DerivedV > |
SelfAdjointView & | rankUpdate (const MatrixBase< DerivedU > &u, const MatrixBase< DerivedV > &v, const Scalar &alpha=Scalar(1)) |
| Perform a symmetric rank 2 update of the selfadjoint matrix *this : \( this = this + \alpha u v^* + conj(\alpha) v u^* \). More...
|
|
template<typename DerivedU > |
SelfAdjointView & | rankUpdate (const MatrixBase< DerivedU > &u, const Scalar &alpha=Scalar(1)) |
| Perform a symmetric rank K update of the selfadjoint matrix *this : \( this = this + \alpha ( u u^* ) \) where u is a vector or matrix. More...
|
|
const LLT< PlainObject, UpLo > | llt () const |
|
const LDLT< PlainObject, UpLo > | ldlt () const |
|
EigenvaluesReturnType | eigenvalues () const |
| Computes the eigenvalues of a matrix. More...
|
|
RealScalar | operatorNorm () const |
| Computes the L2 operator norm. More...
|
|
template<typename DerivedU > |
SelfAdjointView< MatrixType, UpLo > & | rankUpdate (const MatrixBase< DerivedU > &u, const Scalar &alpha) |
|
template<typename DerivedU , typename DerivedV > |
SelfAdjointView< MatrixType, UpLo > & | rankUpdate (const MatrixBase< DerivedU > &u, const MatrixBase< DerivedV > &v, const Scalar &alpha) |
|
Index | rows () const |
|
Index | cols () const |
|
Index | outerStride () const |
|
Index | innerStride () const |
|
Scalar | coeff (Index row, Index col) const |
|
Scalar & | coeffRef (Index row, Index col) |
|
EIGEN_STRONG_INLINE void | copyCoeff (Index row, Index col, Other &other) |
|
Scalar | operator() (Index row, Index col) const |
|
Scalar & | operator() (Index row, Index col) |
|
const SelfAdjointView< MatrixType, UpLo > & | derived () const |
|
SelfAdjointView< MatrixType, UpLo > & | derived () |
|
void | evalTo (MatrixBase< DenseDerived > &other) const |
| Assigns a triangular or selfadjoint matrix to a dense matrix. More...
|
|
void | evalToLazy (MatrixBase< DenseDerived > &other) const |
| Assigns a triangular or selfadjoint matrix to a dense matrix. More...
|
|
DenseMatrixType | toDenseMatrix () const |
|
Derived & | derived () |
|
const Derived & | derived () const |
|
Derived & | const_cast_derived () const |
|
const Derived & | const_derived () const |
|
Index | rows () const |
|
Index | cols () const |
|
Index | size () const |
|
template<typename Dest > |
void | evalTo (Dest &dst) const |
|
template<typename Dest > |
void | addTo (Dest &dst) const |
|
template<typename Dest > |
void | subTo (Dest &dst) const |
|
template<typename Dest > |
void | applyThisOnTheRight (Dest &dst) const |
|
template<typename Dest > |
void | applyThisOnTheLeft (Dest &dst) const |
|
template<typename MatrixType, unsigned int UpLo>
class Eigen::SelfAdjointView< MatrixType, UpLo >
Expression of a selfadjoint matrix from a triangular part of a dense matrix.
- Parameters
-
MatrixType | the type of the dense matrix storing the coefficients |
TriangularPart | can be either Lower or Upper |
This class is an expression of a sefladjoint matrix from a triangular part of a matrix with given dense storage of the coefficients. It is the return type of MatrixBase::selfadjointView() and most of the time this is the only way that it is used.
- See also
- class TriangularBase, MatrixBase::selfadjointView()
template<typename MatrixType, unsigned int UpLo>
template<typename DerivedU , typename DerivedV >
Perform a symmetric rank 2 update of the selfadjoint matrix *this
: \( this = this + \alpha u v^* + conj(\alpha) v u^* \).
- Returns
- a reference to
*this
The vectors u and v
must be column vectors, however they can be a adjoint expression without any overhead. Only the meaningful triangular part of the matrix is updated, the rest is left unchanged.
- See also
- rankUpdate(const MatrixBase<DerivedU>&, Scalar)